17 research outputs found

    Strongly hyperbolic Hamiltonian systems in numerical relativity: Formulation and symplectic integration

    Full text link
    We consider two strongly hyperbolic Hamiltonian formulations of general relativity and their numerical integration with a free and a partially constrained symplectic integrator. In those formulations we use hyperbolic drivers for the shift and in one case also for the densitized lapse. A system where the densitized lapse is an external field allows to enforce the momentum constraints in a holonomically constrained Hamiltonian system and to turn the Hamilton constraint function from a weak to a strong invariant. These schemes are tested in a perturbed Minkowski and the Schwarzschild space-time. In those examples we find advantages of the strongly hyperbolic formulations over the ADM system presented in [arXiv:0807.0734]. Furthermore we observe stabilizing effects of the partially constrained evolution in Schwarzschild space-time as long as the momentum constraints are enforced.Comment: This version clarifies some points concerning the interpretation of the result

    Hamiltonian theory for the axial perturbations of a dynamical spherical background

    Full text link
    We develop the Hamiltonian theory of axial perturbations around a general time-dependent spherical background spacetime. Using the fact that the linearized constraints are gauge generators, we isolate the physical and unconstrained axial gravitational wave in a Hamiltonian pair of variables. Then, switching to a more geometrical description of the system, we construct the only scalar combination of them. We obtain the well-known Gerlach and Sengupta scalar for axial perturbations, with no known equivalent for polar perturbations. The strategy suggested and tested here will be applied to the polar case in a separate article.Comment: 12 pages, accepted by Classical and Quantum Gravit

    Gravitational collapse and naked singularities

    Full text link
    Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for researches in this field. In the absence of general proof for the censorship, many examples have been proposed, in which naked singularity is the outcome of gravitational collapse. Recent development has revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of ``effective naked singularities'', which will be quite helpful because general relativity has the limitation of its application for high-energy end. The appearance of naked singularities is not detestable but can open a window for new physics of strongly curved spacetimes.Comment: 12 pages, to appear in the Proceedings of the International Conference on Gravitation and Cosmology (ICGC-2004), ed. by B.R. Iyer, V. Kuriakose and C.V. Vishveshwara, published by Pramana, minor correction

    The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions

    Full text link
    We derive explicit formulae for a set of constraints for the Einstein equations on a null hypersurface, in arbitrary dimensions. We solve these constraints and show that they provide necessary and sufficient conditions so that a spacetime solution of the Cauchy problem on a characteristic cone for the hyperbolic system of the reduced Einstein equations in wave-map gauge also satisfies the full Einstein equations. We prove a geometric uniqueness theorem for this Cauchy problem in the vacuum case.Comment: 83 pages, 1 figur

    From Geometry to Numerics: interdisciplinary aspects in mathematical and numerical relativity

    Full text link
    This article reviews some aspects in the current relationship between mathematical and numerical General Relativity. Focus is placed on the description of isolated systems, with a particular emphasis on recent developments in the study of black holes. Ideas concerning asymptotic flatness, the initial value problem, the constraint equations, evolution formalisms, geometric inequalities and quasi-local black hole horizons are discussed on the light of the interaction between numerical and mathematical relativists.Comment: Topical review commissioned by Classical and Quantum Gravity. Discussion inspired by the workshop "From Geometry to Numerics" (Paris, 20-24 November, 2006), part of the "General Relativity Trimester" at the Institut Henri Poincare (Fall 2006). Comments and references added. Typos corrected. Submitted to Classical and Quantum Gravit

    Naked Singularity Formation In f(R) Gravity

    Full text link
    We study the gravitational collapse of a star with barotropic equation of state p=wρp=w\rho in the context of f(R)f({\mathcal R}) theories of gravity. Utilizing the metric formalism, we rewrite the field equations as those of Brans-Dicke theory with vanishing coupling parameter. By choosing the functionality of Ricci scalar as f(R)=αRmf({\mathcal R})=\alpha{\mathcal R}^{m}, we show that for an appropriate initial value of the energy density, if α\alpha and mm satisfy certain conditions, the resulting singularity would be naked, violating the cosmic censorship conjecture. These conditions are the ratio of the mass function to the area radius of the collapsing ball, negativity of the effective pressure, and the time behavior of the Kretschmann scalar. Also, as long as parameter α\alpha obeys certain conditions, the satisfaction of the weak energy condition is guaranteed by the collapsing configuration.Comment: 15 pages, 4 figures, to appear in GR

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Angular momentum near the black hole threshold in scalar field collapse

    Get PDF
    For the formation of a black hole in the gravitational collapse of a massless scalar field, we calculate a critical exponent that governs the black hole angular momentum for slightly non-spherical initial data near the black hole threshold. We calculate the scaling law by second-order perturbation theory. We then use the numerical results of a previous first-order perturbative analysis to obtain the numerical value ??0.76 for the angular momentum critical exponent. A quasi-periodic fine structure is superimposed on the overall power law

    Self-similar spherically symmetric solutions of the massless Einstein-Vlasov system

    No full text
    We construct the general spherically symmetric and self-similar solution of the Einstein-Vlasov system (collisionless matter coupled to general relativity) with massless particles, under certain regularity conditions. Such solutions have a curvature singularity by construction, and their initial data on a Cauchy surface to the past of the singularity can be chosen to have compact support in momentum space. They can also be truncated at large radius so that they have compact support in space, while retaining self-similarity in a central region that includes the singularity. However, the Vlasov distribution function cannot be bounded. As a simpler illustration of our techniques and notation we also construct the general spherically symmetric and static solution, for both massive and massless particles.<br/

    Charge scaling and universality in critical collapse

    Get PDF
    Consider any one-parameter family of initial data such that data with a parameter value p&gt;p* form black holes, and data with p&lt;p* do not. As p?p* from above ("critical collapse"), the black hole mass scales as M?(p-p*)?, where the critical exponent ? is the same for all such families of initial data. So far critical collapse has been investigated only for initial data with zero charge and zero angular momentum. Here, we allow for U(1) charge. In scalar electrodynamics coupled to gravity, with action R+|(?+iqA)?|2+F2, we consider initial data with spherical symmetry and a nonvanishing charge. From dimensional analysis and a previous calculation of Lyapunov exponents, we predict that in critical collapse the black hole mass scales as M?(p-p*)?, and the black hole charge as Q?(p-p*)?, with ?=0.374±0.001 (as for the real scalar field) and ?=0.883±0.007. We conjecture that, where there is no mass gap, this behavior generalizes to other charged matter models, with ?&gt;~2?. We suggest the existence of universality classes with respect to parameters such as q
    corecore